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1: INTRODUCTION

Applied mathematics often inVolvegthe solution

of single equation'S or systems of equations. In this

- module we study a Rarticular technique for sOiving

equations in the context of.functions on the real line..

The technique includes an iterative process. i.e., an

algorithm, that can be-understood and interpreted with

cease pictorially and can belimpleminted readily on

inexpensive and widely availaole calculators (program-

.ming feature, helpful but not neces"sary). We also

\ present some examples of physical problems in which

these equations arise.

2. THE PROBLEM

The basic problem here is to solve equations of

'the' form

' (1) f(x) = x. '

A solution of Equation (1) is called a fixed point of

kkgeometrically, such a solution is a value of x for

which the graph of the'function y = f(x) crosses.the

line y = x (see Figure 1). For example, if f(x) = x2,

fixed point

Figure 1. Geometric interpretation
of a fixed point.

1

0

then Equation (1) takes the form

X = x,

which has two solutions (fixed points), x = 0 and
x = I.

Equation (1) is more general than it may semi at

first, because'aq equation of the form

(2) g(x) = 0

may be converted to the form (1) by adding x to both
-

sides:

(g) g(x) + x = x.

and Equation (3), which is equivalent to (2), is now
of the form (1), with fix) = g(x) + x. 'The 'method

presefited here may therefore be applied to find roots

of equations, as well as fixed points.

'3. THE ALGORITHM:

The iterative process that constitutes the basis of

the contraction mapping principle is often called Pieard'i

algorithm or simply iteration. The process is easy to
describe: for a function f whose range is contained in

its domain, start with a poifit xo in the domain, and then
. - /

successively reapply the function. That4s, let
(x
n n=1 be the sequence

(4) x
1

= f(x
o
), x

2
= f(x

Ir
), x

3 ,
= f(x

2 i
), ...

Under someisimpledgonditions that irdolve the con-

cept of a contraction (to be described later), the sequence

defined in (4) converges to a fixed'point of f(x); that

is, if we let x = lim x,, then
11-+.0 -

f(x) = Z.

. We shall formulate the definition of a conz-tMt-i-oir--

and a statement of contraction mapping principle in Sec-

tion 4, but first we illustrate the algorithm by some
simple' examples.

2
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.S.f. Example 1 :-3

Let trg begin-mith an example that is easy to see
-and for which we know the outcome in advance. Let
f(x) = ix and suppose we wish to solve the equation

Z'a.

Pigure.2): By elementary algebra, we know that

1 2 3 4

Figure 2. Geometrical interpretation
of Example 1.

the Solution is x = 3, To apply the Picard algorithm
up- we choose any starting point, say ico = and calculate

successive values of the function according.to,(4).'

The results are indicated in Table 1; check them on
your calculator..

,

.The fixed poilit x = 3 is reached correct to four
.placls in eleven steps. (Note that had we rounded to, two

,places,-'we would have reached the solution to two places in
'-only five steps:)

3
- ,

.1

TABLE 1
s Results of the Picard Process' Applied to

the Function in Example 1, with xo = -5.

r x Formulalor f(x).

tr

A

Numerical;
Approxima ion

of f(x)

ACO= -5,

X 1

,

X3

X .
Xs

Xi
X7

xo

X9

X10

1
2

1
T (.3333). + 2

1
T (2.1111) +

1
x (2.7037) +

1
I (2.9014 + 2

1
y (2.9671) + 2

1
y (Z..9890)'+ 2

1
T (2.9903) + 2

(2.9988) + 2

(2.9960) + 2

1
.z.T.(2.9999)+12

0.3333 = x1

2.1111 = xi

2.70371= x
3

2.9012

2.9671

2.9890

2.9963

2.998B

2.9960

2.9999

3.0000

It is-important to understand the geometry of the

Picardlprocedureo When we let xl = f(x0) and then calcu-
late f(x

1 P
) the first y-Value becomes the new x-value, /

and then we move to a new y-value. This process can be

represented by'a path in which we start at x., 0),

move vertically to (xo, f(xl)) or (xo, x1), then move

horizontally to (x1, x1)', and then vertically to

(x1,f(x1)), and so on. A picture Of this procedure

isshown'in Figure 3.



t.

V
f4

,the calculator in the radian mode, start with xo =
and repeatedly calculate the c "sine (see Tdble 2).

4
,f(x1))

TABLE 2

Numerical Solution of theltquation cos x.
1 1 y

3
x + 2

is

11

:: x4 2.9012

1

.3333 x3 = 2.7037

x
2 .1111

Figure 3. Geometric interpretation of the Picard procedure forthe function in Example 1, with xo = -5.

Exercise 1/

Use the Picard prticedure to solieTthe equation lx - 1 me x.
. 2

4 ,

3.i'ExImple 2

1Suppose we wish to solve the'equation

cos x = x.i

In'this case, the equation. is transcendental, and
algebraic manipulations do not yield a solution.

,1A,reasonable approximation to the solution can be
obtained graphically. Or, if you haye tables for
trigonometric fUnctions handy; you may simply scan
for the poIrit where cos x = x (radians). The CRC

shoWthat cos(.73) =.7452 and cos(.74) =
so we would expect the solution to be close to .74.

The Picard procedure for the equationi cos x = x
can be implemented easily on many calculators. With

1

10

X

X
o

X = 1
/

x2

X3

x4

x5

X
s

X
7'

x6

X9

Formula for f(x)'

cos

Lo\,(1)

cos (.5403)

cos (.8575)

cos (.6543)

cos (.7935)

:cos (.7034)

cos (.7640)

ec:. (.7221)

cos (.7504)

Numerical
Approgimation

A3000 = x1

.5403 = x
2

.8576'= x3

.6543

/.7935

.7014

.7640

.7221

.7504

.7314

x23 cos (.7391) .7393

The convergence for the equation of Eiampie 2 was
much slower than for Example 1; this time 23 iterations
were required for four place accuracy (11 for two place
accuracy). You may be able to see the reason for the
slow convergence by studying the geometric picture --

here-we "wind'around" the fixed point, as shown in
Figure

11
. .6



y

OIMI OMNI=

(.86,.65)

(1,64)

cosy= c x'

1 1.5 2
.

Figure 4. Graph showing the Picard procedure' for the
equation cosx = x.

323 Eicample 3

Consider a. rigid bar that is hinged at 'one end,

with the'other end free to swing. The bar has length

t and.oniform mass distribution, with total mass' m,

Let'0 0(t) be-the angle the bar makes with the vertical

.at time t. At the hinged encyif the baf, there is a

.torsion spring that exerts-a fofce,of magnitude 10, where 6,

k-is a constant, to restore_tjiCbar toits vertical rest
position, We suppose also thatlkdownward.:Cot.ier_E acts

at ihe free end of the bar. Thh bar is given an initial ,

12
Figure 5.

Inge. and spring

Illustration for
Example 3.

7

velocity 00, and started into motion at time t =

(See Figure 5.)

If we neglect the gravitational force, tiT

equation'of motion can be obtained by considering

(angular) forces; this equation is

(5) g - k6 + IF sin O = 0.

1 2(The factor nit is the moment of inertia of the bar
3

about the hinged end.) If k < tF, then the system has

exactly one equilibriumrsition between 0 and IT.

By Equation (5), with U set equal to zero, iht hquili-

britim position is characterized as the solution

(between 0 and Tr) of the equation

-k0 + 2.F sin 0 1. 0.

Thus, the value of 0 that yields equilibrium is the

positive solution of the equation

-FtF sin x x.

For example, if the values of 1, F and k are such that

1F/k = 1.2, then wt can find the equilibrium position

by the Picard algorithm, starting at xo =Jr/6.

TABLE 3

Numerical Resuits of the Picard Sequence
for 1.2 sin" x = x, Starting at xo = Tr/6.

X

,

Formula for f(x)

1.2

1.2

sin (71/6)

sin (.0-

sin (.6776)

sin (.7523)

sfp. (4200)

Numerical Approx-
iition of f(x)

6:46000- = x,

.67 6 =

.75 3

.8 00

1773

1.2 sin (1.0261) /, 14267



Thus, in this case, the equilibrium pdsition occurs near
1.0267 radians, or around 59°.

Exercise 2

Find 'the equilibrium position for the system in Example 3

when /F/k 10 1.4.

4. CONTRACTION MAPPINGSC

In this section we consider conditions under which
the Picard algorithm can be used to solve equations.

'4.1 Example 4

_Consider the function f(x) =-2x'+ 1. We know by
, simple algebra that x = 2 is the solution of the

equation 2x - 1 = x. However, when we try the algorithm

with xo > 1 or with xo < 1, We move away from the solu-
tion (see Figure 6, and compare Example 1 and Figure 3).

.

do

Figure 6: Illustration for Example 4.,

y

14
9

It turns our that this behavior is related to the fact
1that the slope of the line y = 31 + 2 is less than 1

and the slope of the line y = 2x - 1 is greater than 1,
as we see in the discussion below.

Let f be a function that is defined on an interval
I which is of any of the following types:

{x: a < x <\b}, where a < b are finite numbers;
{x: x < b}, where b is finite;

{x: x > a}, where a is finite;

the entire real line.

Thus, we consider the interval I as the domain of f
(even though it may be that the formula for f can be
applied to a larger set). When the values f(x) are
also contained in the interval r for x in I, we say
that "1' maps I into I" and write f: I + I. (For

example, let f(x) = 3x2, and consider I = (x: 0 < x < 11.
If x c I, then f(x) c I also, and so f: I + I. In

this example, we note that the natural domain of f is
the whole line, but we simply want to consider the

behaviqr of f(x) for values of x from 0 to 1.)

Let I be a real interval as described above, and
let f: I + I. Then f is called a contraction on I
if there is a constant r such that 0 < r < 1 and for
all x,t in I we have

If(x) - f(01 < r x tl.

4.2 Example S

Let f(x) = lx + 2, I the.,whole line. Then for
all x,t we have

If(x) - f(t)( = + 2] - (lt + = Six - ti. .

Thus, f is a contraction'on I, with r = 1.

10



4.3 -Example-6

Let f(x) = 2x - 1, I the whole line. Then for
any x,t we have

.1£(x) - .f (t)4 = 1(2x - 1) - (2t - 1)1 = 21x - tl.

Thus, f is not a contraction-on I.

The-contraction mapping principle for the

real line. Let I be a real interval ore type

indicated above, and f: 'I -0- I. If f \is a con-

traction on t, then the equation

f(x) = x

has a unique solution in I, and this solution

may be.obtained by choosing any, point xo in I,

forming the:sequence

'il = f(x0), x2 = f(x1), x3 = f(x4)

ana passing to the limit. The solution is

lim x
n'

n-000

A proof of the contraction mapping:principle is

_presented in the Appendix.

The contraction mapping principle may-s-eem to -be

restrictive, but there are two important techniques

for extending the applicability. First, we note that

if f is defined on I, if:f is an'expaneion; i.e. for

all x,t we have.

if(x) > klx -

where k > 1, and if the range R of f contains I, then

we must have the following:

I is one-to one, so that. f.1 is defined on R;

f-1: 12-0- I, and I c R, so f
..1

: R -0- R;

f-.1 is a contraction on R, with r = 1/k.

16

Hence there must be a unique x in R such that

(x) = x.

But since the'graphs of f and C.' are symmetric in the
line y = x, x must also-be in I and we must have

f(x) = x.

4.4 Example Z

Let f(x) = 2x - 1, I the whole'line. We saw in
Example 6 that f is an expansion, with k = 2. The

'inverse function is defined also on I, and is given
by the formula

f (x) = Yx +

Then f-1 is a contraction on I, with constant

=
1r = - The Picard algorithm now yields the

solution of the equation

1 "1
.1-x + 7 = x,

which isx = 1, as shown in Figure 7. (Compare and

Y-

x
0

< 1

x
0

> 1

4

Figure 7. The Picard algorithm for Example 7.

17 12



contrast with Figure 6.)' Since the equation

'may be rewritten

'2x - 1 = x'

The reason- that -the-above-sequence vonverges-can be,

can be seen by choosing our interval I carefully and

observing that f is 4-Contraction on I. For example,

we have the solution. of the original probleMSEOsed.

in EXabple 4., 7'

The second way in which we 'can extend the 4plica-
,

bility-of the Picard algorithm,is by considering the
iterates of f rather than f itself. For f: I + we

f
2
(x) = f(x), f

2
(x) =

1
(x)), f

3
(X) = f(f

2 (x))I... .
.

It ',turns,out that if there exists a positive ,iAteger n

such-that-f- is a contraction on I, then the fixed point
of_fn is alSo the fixed point of f in I, and the fixed
point can be found, as before, by choosing any starting,,

point x0 and iterating the function f, even though f
itself is nota contraction. (It would be a challenging

exercise for an advanced student who can handle the proof
=42Etthe contraction mapping principle in the Appendix to
Conttruct a proof for this extension of the pririciple.)

This technique may also be combined with the use of in-

.

vepes,\as-the following example will illustrate. ' Thus, by the law of the mean, for x, t < 1, we havet

4.5 Example 8

if we let

1 4y x

_4
de

.4'

2 -
1

y = x

. 1

1

1
1 >o

1

I I

I

x
xo

/
1 2

Figure 8. The graph for Example 8.

I = (x: 'x < 1),

then f: I I, and for x in I we have

f' (x) =
1 x

.

, .

SUppose we wish to solve the equation

, 1.
e
x

= x;

A rough sketch shows that we should expect to-find two
,solutions, one between 0 and 1, the other greater than

-

two. In Figure 8 we can see that if we take xo to be,any
point to the left of.the larger solution, the Picard

sequence-willconVerge-to-the -smmller-solution.- The
approgimate values obtained by starting at xo = 0 are:

0, .25, .3210, .3446, .3529,..3558, .3568, .3572, .3573,
,.3574.

13

ii(x) f(01 lk-et) (x

where is between x and t. Thus,

if(x) - f(t)1 = - ti < ix - ti.

Thus f is a contraction on I with contraction constant
r = e /4.

.

If we try to reach the larger solution of .ex = x
by taking xo between the solutions, we must fail, as

shown also in Figure 8., This behavior can also be

understood in terms of contraction mappings. This

19 14



.

time we take as an example I= (x: x < 21. If we
iterate'f, letting Cr(x) = f(x), f2(x) = f(fi(x)),

-f3(x) = f(fi(x)),:.., as discussed above, then it turns
out that f, is a contraction on I, and in fact for
'x, t < 2,-it can be shown that

If4(x) /4(01 < 91x -.tI.

1- Thus, there is a unique fixed point for Te x in . 1 and,

. since we have already found one ()approximately), the Picard

algorithm cannot yield the fixea.,point to the right of\x = 2.

In' addition, if we try to find the second solution of
the equation-iex = x by choosing x, to the right of this

root (try it for your;elf, with xo = 3, for example), the

sequence of iterates diverges, ''increasing without bound,
exponentially. This behavior,'too, is indicated in Figure 8. .

Thus, if we apply the Picard algorithm to any value
x

o
(other than the,second oot itself exactly!, the se-

quence of.iterates will not converge to the second, or
1

larger, root of-T e x = x. However, we can find this second

Figure 9. The graph of y = £n 4x.

20
15

root by applying the Picard algorithm to the inverse fUnc-

tion, In 4x, as described on pp. 11-12. For example, if
we take I = {x: x 2 1.4} (1.4 is just a little largerthan

£n4, where the slope of 4ex is 1), then f is an expansion.

e?' for x in I con-on I, and the set of values assumed by

tains I. Thus, the inverse should be a contraction, and

is, as can be seen in Figure 9.

Now if we take I = fx:x > 1.5 }, for example, then

.1114x is a contraction on I, and we may solve the equation

in 4x = x

by the Picard algorithm, starting at any point to the

right of x = 1.5. If we start at x = 2, we obtairi the

sequence 2, 2.0794, 2.1184, 2.1370, 2i1457, 2.1497,

2.1516, 2.1525, 2.1529, 2.1531, 2.1532, 2.1533, 2.1533,

.... Thus,

kn[4(2.1533)] ;2.1533,

so that

e
2.1533

P 4(2.1533),

1 2.1533
e = 2.1533.

Thus, the larger fixed point of lex is approximately

2.1533:

Note.that in choosing'a value for the left endpoint

of the interval I indicated above, it was not really

necessary to enure that 2,114x would be a contraction on I.

We chose 1.5, which is to the right of the point x = 1

where the curve £n4x has slope one,.and since the slope is

decreasing the mean value theorem shows that kn4x is a

contraction on I for the choice we made. However, we

could have chosen instead any value to the right of 0.3575,

which is slightly larger than the first root of the equa-

tfon-kn4x = x. Recall that our approximation for this

root, which we obtained using the original equation

2' 16-



0

le
=`x,

was 0.3574 to.four-decimal4laCes.)1 For
example, if we had taken I x then the

iterate fs,witiuld be a contraction on I, so the iteration

procedure would still yield the desired fixed point;

this example illustrates the combining of the two exten-

sions of the bisic contraction mapping'principle, as
promised in the final sentence immediately preceding
Example 8. (Try iterating the function /n4x starting with
,x0 = .4, and follow the_iteration-both on the calculator'

'and geometrically,on a graph of the function--you will see

the points coming closer together starting with the fifth:
',application of the function.)

Exercise-3

1
Solve-the equation -1-coshx = x. (Hint: This problem is

7---'s-hni-trirto-the-probleampleh.You may need to know that

for f(x) =1-costrxthe appropriate inverse funciton for this

problem is given by the formula f11x) In (2x + Ofx - i) in order
. to find the larger solution: On some calculators the inverse

hyperbblic cosine is available directly.)

5. 'FURTHFR EXAMPLES AND APPLICATIONS

-

S.1 Example 9 (

When a beam of light passes through a narrow slit,
it spreads out in the shadow region. This effect is
called diffraction, and a diagram representing a simple
model, called Fraunhofer diffraction is shown in Figure
10.

22
17

Wagligit
Source

'
Lens

,Defracting
Slit

Lens

Screen

Diffract:on
Pattern

Figure 10. Experimental arrangement for obtaining the Fraunhofer,
diffraction pattern of a single slit.

By an application of basic principles of optics,
it can be shown that the light intensities on'the screen

can be (approximately) expressed in the form

I = A2 sin28
82

where B is a suitably chosen spatial variable. (See
D. Halliday and R. Resnick, Physics.) The quantity

A = Ao sin g

is called the amplitude of the vibration. A problem of
-interest in optics is to determine the-location.,of the

maximumeintensities, thus we wish to optimize the function

A = A
o

sin
0

8
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We have

A' =A Bcos - sine
0 82

and we find initial pointsby setting A' = 0:
-

A Scos8 - sinB =
62 1

The critical values can be obtained by solving the,equation

,.tan 0% 0, or tanx x.

geometric picture is shown in Figure 11.The

A

Figure 11. The graphs of y = tan x and y = x.

We see the first maximum intensity at x = 0.

For larger values ox the fixed points will be near

.odd.multiples of vie, such as 7n/2, 9n/2, .... We

find' -the location of the first nonzero intensity here,

using the Picard algorithm applied to the function

y = n + arctan x, starting at x0 = 0 (see Figure 12).

24
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Fixed point

y = it arctan x

=11

Figure 12. The Picard algorithm for finding the smallest
positive fixed point of tan x , using the inverse.

The resulting sequence of approximation is 0,

4.4042, 4.4891, 4.4932, 4.4934, (.4934, ....

of the first maximum intensity to the right 0

to 0 ; 4.4934.

.

3.1416,

The location__

corresponds

Exercise 4

Find the fixed point of tan x that lies between 3n/2 and

5m/2 (i.e:, the location or.the second maximum intensity to the

right of 0) in the Fraunhofer diffraction pattern.,

Exercise.5*

In cavity resonators used in traveling-wave tubes the energy

storage ratio 14/W2 has an expression of the form

Wi

2
2sin2(072)
8
t
10/2)

(8 in radians)

where 0
t

is constant. Use the Picard algorithm to find the

*
See N.M. Nodelman and F.'W. Smith, Mathematics for Electronics.

Q
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n
z

maximum value of
sl
-- (and then mufi(ply the critical value of

A

x by'2)to_find the value of 8 that maximizes the energy, storage

-ratio. N

. .

.2 Example 10.,',-

In-submarine.loCation probleMs; it is often
. _ .

,important_tg find the submarine's closest point- of

'4iproaa-K-P110--to-a-rono Uoy n the waterc , Suppose
.... .

° l
'that a sonobuoy is_located'at (2, -2) on a'rectangU/ir:

,system and that a submarine travels on_a_paraboiic -

-Inath,along,the curVe:T= 10." (See Figurell.) iFor.

any -point (x,x2) on 'the parakota, the distance .,U, the

,..ionobuoyi.s-

D = [(x - 2)2 + (x2 +

17= ((x'' + 2x2 - 4x + 1-) i

We wish to find the critical x that minimizes D; this

y

,CPA

y x
2

Submarine track
in two dimenilons.

value will also ,minimize D2, and we proceed
.1-

ai(D2)'= 4x3 +'41x - 4,

- so we wish to solve the equation

x3 + x - 1 = 0.

,We can arrange this as a fixed point problem:

x3 + x = 1

x(x2 + 1) = 1

1
x.

1,+ x2 \

A rough sketch of'the graph of f(x) =
1
+ x2 (see

Figure 14)" shows that f is a concentration mapping

on the whole line, so we implement theWicard algorithm,

starting at xo = 0, to obtain the sequKce 0, 1,

s_-

y

0
Figure 14. Graph of y =

1

1 + x
211."*. x

I 2 (21,4)

Sonobuoy.

Diagram for.Example

'21
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.8, .6098, .7290,, .6530, .7011, .6705, .6899,

.6775, .6854, .6804, ..., .6823, ,6823,.:

Thus the CPA of the submarine to the sonobuoy is approxi-
mately the point (.6823, (.6823)2) or (.6823, .4656).

We conclude- this --section -with -an- example that -is

presented in Wyli's Advanced Engineering Mathematics.

5.3 Example 11

A
.

s ender-rod of length L-tas-tts-curve d say face

perfectly insulated against heat flow. The rod is

located arang-the x-axis with its left end at x =

the right at x = L. The left end is maintained at

temperature.u(Y,t) =0-for all time t > 0, the right

end radiates heat freely into air of constant tempera-
ture 0. If the initial temperature distribution in
the rod is given by

u(x,0)= g(x),

the problem is to find the temperature u(ic,t) at any
point 0 < x < L and t > 0. By an application of Stefan's
law and a "geparation.of variables" argument, Wylie

shows that-the'solution can be expressed in the form

y = tan z

(6),
2

u(x,t) *Bn e
_1
"Ai./za

2

sinAnx'.
. n=1.

Whai is important for us is the fact that the values
An are'giventy

z
n

17''

where the z0,22, ... are the positive roots of an'

equation of the form

tan z =

rribsitive contant (see Figure 15): For

exampleOf a = .25, then we must solve Um equation
of the form

23
23 .,

Figure 15. Sketch shoWing z1, z2, z3 for Example 12.

4

.25 tan x = x

in order to find the eigenvalues A1, A2, .... We

obtain the Picard sequence from the algafithm

y = n + arctan (-.25x):
. .

0, 3.1416, 2:4759, 2.5873, 2.5674, 2.5710, 2.5703,

2.5704, 2.5704, .... Thus z1 = 2.5704, and the first

eigenvalue can be obtained from the relation

.57AI = 2 04

When we have found several values of an, we

may substitute them into Equation (6)-and thereby

find series approximations_for_the-temperature

distribution u(x,t).

Exercise 6,

Find the second root z2 in Example it with a = .25.

99
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6. COMPARISON WITH NEWTON'S METHOD algorithm also a viable alternative to Newton's method,
s ' in many problems.

. .

There aremany numerical methods of solving real .

The second reason for learning this method is'equations of-'the form
that the contraction mapping principle.can be formu-

g(x) = 0. sated in more general terms to solve a.much wider class
,.

of problems than real,equations. For 9cample, it can be(This is equivalent to the problem of solving

-used tb solve systems of linear eqUations, nonlinearf(x) ,.. x,
equations in higher dimensions, diffefential equations,

'since wemay write'the latter as and integral equations. (See, for example A. IC Naylor
.

and- G..R.s-e-24-;L-intaiope-ratorTheinSoi-enceanf(x) - X. is. 0 \-

.

and

on differential- equations; they also haveanCsimply let g(x) = f(x) - x.) One popular such
. a nice discussion of the 'relation of the principle to

. method is called Newton's Nethod, which is carried out
.closed loop feedback-systems.) Concrete applications onby choosing a starting pointexo carefully and then
the real line serve as a solidfoundatioll-kor exploringapplying the algorithm % 1
interesting applications in more advanced settings.

x
114.1 n fTfijc

f (xn)

Newton'siethod enjoys many advantages; fof example,

the-resulting numerical sequence often converges faster

than that obtained from the contraction mapping princi-
ple. There-is rather general agreement that Newton's'

method lithe superior of the two. (A comparison of

-these methods can be found M.L. Dertouzos, et al.,'

Systems, Networks, and Computation: 'Basic Concepts.)

If NewtbrOks method is better.,: you may well ask,

"Why bother with Picard at all?" There are two primary
. .

reasons., First, there is really not a dichotomy between

these methods, i.e. you need not choose between them.
Learn both!" Because it is simpler and.often,easier,

to implement.on a (programmable or nonprogrammable)
- calculator, the coin...I:Kt/oil...mapping inc sery es_

as an excellent introduction to numerical methods.

The simplicity and ease of implementation, coupled
with its range of applicabi-lity make the Picard

30
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2.

7. MODEL EXAM

1.

V

8. ANSWERS TO EXERCISES

Solve the fotlow.ing equations using the contraction mapping
-2.0000,

Inliiepte -0i-we's-algorithm):

- x
a.' e x;

-e/2
b. e = x;

c. sin.2x = x.

(lse*thecOntraction mapping prinCiple, together with a little

2.

3.

4.

5.

6.

1.

2.

1.3720.

.5894; 2.1268.

7251.

2.3311.

5.3540.

9. SOLUTIONS FOR MODEL EXAM

Manipulation, to solve the equations:

a, sin x = x2; .

b. cot x = x (find the solution that lies between 0

and n) .
a. .5671;

b. -7531;

c. .9477.

sin x
=a. Use then x .8767.

b. Use arctan
1

= x; then = .8603.

27 28



10.--APPENDIX

-trcrff011.: Ureic-contraction mappikg principle.

that-i is *n interval of the

for (xi i-< x < 151, that fl I-* I, #nd-that there

exists a positive constant, Such that for all x, t

inn I we-have

1? (20 -7 f(t)1 < - t1.

Lerx0 be any point in I, and let

x, - f(x0),- x; * gat),

Then,

-x11* 11(xi) -f(x0)1 < rixi

1x3 -x21 = 1f(x2) f(x )1 < r1x
2

- x1 < ralxi -x01,

X4 - Xs I 4 If (X3) ' f (X2) I IX3 X21<rS 13Ci ' X019

= f(x2) "..

Itcan be shown by mathematical inductiOn

every n,

lxn+1
- xn1 < rnIxi x01.

Thus, for all positive integers n and k we have

Ixroic - <. Ixn+1 - x311.+...+
n +k

< (r
n

+ + r

n+k-1
- x01. I r1

that for

1x1 - - Sn_i)

x01 .

----
where {S

m ra
r

s0 is the sequence of partial sums for the
series 4.

ri
i=0

29

1 -Since this sequence is a Cauchy sequence (remember

0 < r < 1; so the geometric series converges), it

follows that the sequence .

n n=1

is also Cauchy,,and hence converges. Let 1

Lim x
n
=X.

Now-th-e-condition-that-f-be a contraction-also-

implies that\f is continuous (for a given c > 0 take

6= a In applying the definition of continuity).

Theiefore,

f(x). = f(lim x
n
).= lim f(x

n
) = lin x

n+1
= x,

n+=. n.+02

s.) x is a fixed point of f. Moreover the fixed point

of f (in I) is unique, because if x' is any fixed point
of f in I, Chen

Ix - x'l = 1f(x) - f(x')1 < rlx - x'1,

from which

(1 -'r)lx I:x11 < 0.

But 1 - r > 0, and since Ix - x'l >0, we must have

0 < (1 - r)lx - x' r < 0,

from which

(1 - r)lx - x'l = 0

and finally

lx x'l = 0

so that x = x', and the fixed point is unique.

3 5
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STUDENT FORM 1

Request for Help

.

Return to:
EDC/UMAP
55 Chapel, St.

Neviton, MA 02160

Student: If you.have trouble with a specific part of this
and take'it to your instructor for assistance.
help the author to revise the unit.

unit, please fill
The information

Unit No.

out this form
you give will

Your Name

OR OR

Page

Section Model Exam
Problem No.

0 Upper

QMiddle

Lower

Paragraph Text

Problem No.

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution pf the difficulty in this box.

Corrected errors in materials. List corrections here:

(2)explanation,Gave student better explanation, example, or procedure than In unit.
'Give brief outline of your addition here:

' ,

(2) Assisted student in'acquiring general learning and problem-solying
skills (not using examples from this unit.)

Instructor's Signature

Please use reverse if necessary.



0

Name

Institution

STUDENT FORM 2

Unit QuestiOnnaire

Unit No.

Course No.

Date

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to your personal opinion.
1. How useful was the amount of detail in the unit?

1

Not enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of-detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

2. How helpful were the,. problem answers1

Sample solutions'were too brief; I could not-do the intermediate steps
SOfficient information Was;given to solve the problems

-7--Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example,- instructors friends, or other books) in order to understand the unit?

A Lot Somewhat 'A Little Not at all"-

4. How long was this unit in comparison to the amount of.time you generally spend on
a lesSon (lecture and homework assignment) in a typical math or science course?

Much Somewhat About SoMewhat Much
Longer Longer the Same Shorter Shorter'

5. Were an of the followin: arts of the unit confusin: or distractin . (Check
as many as apply.)

Prerequisites
--Statement of skills and cmIcepts (objectives)
Paragraph headings
Examples

I

Special Assistance Supplement (if present)
Other, please explain

.6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites

Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contents

Special Assistance Supplement (if present)
----Other, please explain

Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.)


